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Intended Audience

The intended audience of this thesis is all people who want to understand the dimen-
sionality reduction process.
Thanks to the universality of visual language, the main aspects of some (nonlinear)
dimensionality reduction techniques are illustrated in this work. We describe the al-
gorithms of six popular dimensionality reduction methods not only by mathematical
equations but also by a series of visualizations per each technique. This dual approach
allows a general audience to understand the mechanism leading to graphical repre-
sentations of high-dimensional data spaces. Following some visual storytelling, the
readers are guided to gradually deal with usual issues involved in (un)supervised clus-
tering. Comments and discussions are included in each section to induce the reader to
think about relevant aspects of the subject.
Thus, we addressed the contents principally to students, although advanced topics are
discussed and further reading are provided to satisfy more expert reader needs.
Obviously, prior knowledge of linear algebra and basic statistics can be helpful to com-
prehend all the examined material.

“The essence of independence is to be able to do something for one’s self”

Maria Montessori
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Abstract

High-dimensional data are common in many fields of application such as computer
vision, biology, neuroimaging, meteorology and many others. Handling them is prob-
lematic due to the time and storage space they require and to the complexity in visual-
izing them. In addition, in high-dimensional data, it is likely that some attributes are
correlated and this worsens the performance of statistical models. For these reasons,
dimensionality reduction has become crucial for preprocessing these kind of data. A
deep understanding of dimensionality reduction methods is important for selecting
the appropriate technique in any different case and to interpret the results correctly.
In this work, we show a series of visualizations per each dimensionality reduction
technique studied (Kernel PCA, Isomap, LLE, Sammon Mapping, SNE, t-SNE) which
illustrates the algorithms. The focus is on the nonlinear methods as they are more pow-
erful but also more complex to use. Using a visual storytelling approach, we guide the
reader in a learning process which combines graphical representations, practical expla-
nations and deeper considerations about the dimensionality reduction issues. Visual
examples are provided to compare how the different techniques work on the same data
as well as to compare how the same technique works on different data. Furthermore,
real and artificial data were used in order to enhance both practical and theoretical
understanding of the algorithm use.
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Acronyms

DR Dimensionality Reduction
NLDR Nonlinear Dimensionality Reduction
LDR Linear Dimensionality Reduction
LLE Local Linear Embedding
MDS Multidimensional Scaling
PCA Principal Component Analysis
PCs Principal Components
SM Sammon Mapping
SNE Stochastic Neighbor Embedding
t-SNE t-Student Stochastic Neighbor Embedding
kPCA Kernel Principal Component Analysis
r.v. Random Variable
KL Kullback-Leibler
SVD Singular Value Decomposition
k-NN k Nearest Neighbors
2D Two-dimensional
3D Three-dimensional
N Total number of observations
C Cost function
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Introduction

Motivations

Generally, the data science process is composed of three main phases in which the data
are handled: the preprocessing, analysis and post-processing.
Although the analytical part is the core of this process, the preprocessing phase plays
a fundamental role in the statistical process. It can significantly affect the results and
without performing it, the analysis may not be able to be carried out. During the last
decade, the big data market has grown exponentially thanks to the fact that nowadays
is easier to collect, store and analyze high-dimensional and big data by using current
technologies [103]. However, many statistical models suffer from the so-called curse
of dimensionality [13]. In high-dimensional spaces, data tend to be sparse and hence
certain statistical methods are no longer applicable unless there are a large number
of observations. Moreover, working with large scale data sets can still require a large
amount of memory and computation power, even if some effort to remedy this have
been done [66]. Thus, dimensionality reduction methods play an important role in the
statistical process allowing the data analysts to reduce the number of original data fea-
tures. Furthermore, DR methods enable us to visualize the original data in 2D or 3D
plots.
These methods are used extensively in many active research areas such as wood in-
spection, face recognition, sound source localization, speech recognition, analysis of
fMRI data, supervised or semi-supervised learning problems, novelty detection, geospa-
tial data, visualization of biomedical data, head pose estimation, gene data, image pro-
cessing and data visualization [60].
The dimensionality reduction methods are usually categorized in Feature selection or
in Feature extraction methods [75]. Feature selection consists of finding a subset of the
original dimensions following some rules. For instance, in filtering data one excludes
some dimensions and work with those which remain. Alternatively, by applying a fea-
ture extraction method one aims to transform the data from a high-dimensional space
to a lower-dimensional space, usually to a 2D or 3D space.
In this thesis, we focus on feature extraction techniques and, more specifically, on non-
linear dimensionality reduction techniques. But, since the number of methods which
follow in this subgroup cannot be discussed in only one paper, we focused on Sammon
Mapping [46], Kernel PCA [83], Isomap [88], Locally Linear Embedding [79], Stochas-
tic Neighbor Embedding [42] and t-Distributed Stochastic Neighbor Embedding [94].
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The Big Picture

The vast use of high-dimensional data by many users with different backgrounds from
statistics can lead sometimes to a generalization and misuse of NLDR methods. Due
to the highly abstract nature of these techniques and to the huge number of existing
methods, it is not easy to understand how they work, which technique to use and how
to interpret the results. These barriers between NLDR methods and unfamiliar users
can lead to either incorrect or an undesired outcome, or even the inability to work with
large scale data.
In fact, the algorithms of these techniques look like ’black-box’ algorithms. They con-
sists of different steps in which the original high-dimensional data space is trans-
formed many times through different iterative processes and/or decompositions. In
addition, some of them do not work directly with the raw data but with abstract mea-
sures of (dis)similarity of the data points and, finally, the output space is obtained by
extraction, projection or optimization. It is not obvious what is going on during this
procedure as a sequence of different sub-algorithms take place in every DR algorithm.
Besides, interpreting the final embedding can be complicated since it is not possible to
compare input and the output spaces directly, especially if the number of dimensions
in the original data space is high.
For these reasons, visualizing the transition of data from the input space to the output
space during the dimensionality reduction procedures could help a general audience
and students to grasp the main ideas behind NLDR techniques and let the readers to
use and interpret them adequately in the future.
This is the main objective of this thesis.

The Objective

In the following pages, we aim to introduce the main concepts of dimensionality re-
duction, to explain the logic behind the above-mentioned NLDR algorithms and to
suggest a critical approach to the interpretation of results with the support of visual-
izations.
The need to make clearer how NLDR techniques work by using a universal language
arises from the use of them in many fields of application. As a consequence, it is impor-
tant that the message is well conveyed to students of different theoretical backgrounds.
Therefore, the focus of this work is to visualize the mapping of data from high-dimensional
space to low-dimensional space while following some visual design rules.
First, we should make use of visual storytelling to represent these dynamic processes
through a sequence of (static) visualizations. The user is involved in a guided learn-
ing process designed to make connections between new concepts avoiding an initial
"blind" interaction. This facilitates visual comparisons without need to memorize ev-
ery step ("eyes beat memory", McKinlay). However, as the fundamental aspects will be
discussed the readers are encouraged to explore the topics of their interest, enhancing
the creative learning process [71] and, for this reason, we made already available an
interactive version of this project in NLDRviz [57]. Moreover, the final work should
not be unjustified 3D visualizations which can be less intuitive [72] and the data-to-ink
ratio should be maximized [91].
We hope that this thesis will be a useful tool for master students and, in general, for
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a non-expert audience who aims to use NLDR techniques correctly. Through visual
storytelling, not only the process of learning can be accelerated but it also can be deliv-
ered in a more complete way. Thus giving clues to how to visualize the mechanisms
behind NLDR methods. This is essential to understand abstract concepts.

The Challenges

Generally, teaching abstract concepts is a complicated task. Especially, if several ab-
stract topics are grouped together in the learning process.
In this work, the objects of interest are techniques which involve abstract topics such
as linear algebra, topology, multivariate statistics and geometry. Therefore, our ul-
timate goal was to make these concepts accessible to a larger audience. During the
visualization process, it is useful to consider the problem on three levels: What we are
visualizing, Why we are visualizing it and How we are visualizing it [72]. The last com-
ponent is the most technical one, typical of the visual designer and it requires different
actions before ending up with the final visualization. For instance, preprocessing big
data is a common option to obtain visual representations of them. Thus, the What we
want to visualize (i.e. the dimensionality reduction methods) was the usual How to
visualize objects [80].
Finally, the visualization techniques each consist of different algorithms themselves.
This has been an issue since we wanted to limit the total number of frames per sto-
rytelling whereas several frames would have been necessary to completely illustrate
every step. This would have increased the complexity of the final results which should
be expressive, intuitive and consistent to be effective.

Related Works

There are not many related works which aim to visualize the NLDR algorithms. How-
ever, there are some projects which visualize statistical concepts or simpler algorithms
in an efficient way.

Recently, Wattenberg et al. developed How to Use t-SNE Effectively, a visual tool
which shows how t-SNE works with different artificial data sets [99]. The user can set
the required hyperparameters of the algorithm for producing the final visualization.
Moreover, the sometimes deceptive features of t-SNE’s final output such as the dis-
tances between clusters and their size are discussed and explained. This is a must-see
for anyone who wants to explore the functionalities of this technique before experienc-
ing it themselves.

Mike Bostock, one of the key developers of D3.js [68], produced alternating static and
dynamic visualizations from a series of algorithms in Visualizing Algorithms [70].
He compared different algorithms per task mixing various visual design approaches
among which the storyboard approach. Yet, his work is not only efficient but also aes-
thetically pleasant and a lesson of visual design. The algorithms illustrated concern
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sampling, shuffling, sorting and maze generation.

Daniel Kunin created a project to teach statistical theory through visualizations, Seeing
Theory [25]. The work consists of a set of interactive visualizations in which statistical
basic concepts including confidence intervals, ordinary least squares and hypothesis
testing are visualized using D3.js. It is intuitive and users can interact and actively
learn by changing the algorithm settings.

A visual introduction to machine learning by R2D3 is a fusion of machine learning
and visual design, by showing how to make data analysis throughout an interactive
visual storytelling [77]. Changing marks and channels as one scrolls the web page, this
project illustrates the statistical processing of data, alternating different visual design
methods at each step of the analysis.

An explanation of PCA is made by Victor Powell and Lewis Lehe in Explained Visu-
ally [97]. The 2D and 3D visual representations of PCA are particularly significant as
the user can see the effects of dimensionality reduction directly and PCA linear data
transformations in low-dimensional spaces. It is also possible to interact with the visu-
alizations which makes the concept of maximum variance more easily retained.

Another visual explanation of abstract concepts such as momentum is a work made by
Gabriel Goh, Why Momentum Really Works [34]. It describes the mechanism of the
optimization algorithms focusing on its most relevant features and in the role played
by the momentum.

The ongoing project by Steven Halim, VisuAlgo helps to understand data structures
and algorithms, by allowing the users to learn interactively on their own [87]. The con-
cepts illustrate mainly graph theory, machine learning and computer sciences whose
many applications are available, for instance, hash tables, segment trees and shortest
path. Overall, this tool is intuitive and simple to use thanks to a friendly user-interface.

For further material about dimensionality reduction, machine learning and algorithms,
we also suggest referencing other interesting projects [67, 15, 32, 18, 90, 22, 39, 92].
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Background Knowledge

Before diving into the core of this thesis, it is important to clarify some key concepts
of the dimensionality reduction methods. A short description of the distance metrics
related to NLDR methods of interest and a comparison between linear and nonlinear
DR methods are made. In addition, we recall the main ideas regarding PCA and MDS
(and SVD), the most widely used (linear) DR techniques over the last century.

Distance Metrics

The main goal of dimensionality reduction methods is to represent each data point of
the original space by a point in a lower dimensional space attempting to preserve the
neighborhood [55]. This is strongly related on the choice of distance metrics (or bet-
ter, dissimilarity measures) measuring the similarity between objects and on the curse
of dimensionality effects [10]. For high-dimensional data, the concept of proximity
becomes meaningless and the dimensionality reduction algorithms lose effectiveness.
This problem of poor discrimination between the nearest and furthest neighbors ex-
pands exponentially as the dimensionality increases [13]. Therefore, the distance mea-
sure choice affects the NLDR algorithm performance. There are several dissimilarities
measures for quantitative data [35] but we focus on only some of them.

Euclidean Distance

The most popular and widely-used distance metric is the Euclidean distance. Its main
property of giving greater emphasis to larger differences within a single variable is un-
desirable in high-dimensional space context. This is because high-dimensional spaces
can be viewed as cubic spaces with much denser corners in comparison to the rest [48].
And the Euclidean distances must be seen as distances countable only in the sphere
contained in this cubic space. Hence, only two objects located in the area in which
the Euclidean distance is meaningful can be well represented by this metric. Unfortu-
nately, this is only a small portion of data in high-dimensional spaces. It can be written
mathematically as follows

d(x, y) = ||x � y|| (1)

where x and y are two different data points in the n-dimensional data space.

Geodesic Distance

A generalization of the concept of a straight line, as intended for the Euclidean dis-
tance, to curved spaces is the Geodesic distance [88]. To give an idea of this metric, a
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well-known application of it is the definition of horizontal distances on Earth. M is a
geodesic if it is true that

d(�(t1), �(t2)) = v|t1 � t2| (2)

where � : I ! M is a curve from an interval I to a metric space M , t 2 I and t1, t2 2 J

with J a neighborhood of t and v � 0 is a constant. If v = 1, M is the geodesic shortest
path which measures the distance between two nodes in a graph through the number
of edges in the shortest path connecting them.

Kernel-based Distance

A mathematical trick called Kernel trick allows us to measure the distance between
data points of an implicit high-dimensional space without computing the coordinates
of the data in that space. This is possible by computing the inner products between all
pairs of data instead. In this way, the explicit representation of the mapping is avoided
and operations on the implicit space are possible, as measuring the distances between
data points. For instance, the Kernel function K should be known a priori to obtain
accurate results [107]. The Kernel function is the relationship of the manifold where
the data points lay and the original space. It has a mathematical form as follows

Ki,j = (�(xi) · �(xj)) (3)

where � is the feature map � : X ! V , X is the input space and V is the implicit space.

Kullback-Leibler Divergence

Unlike the above-introduced distances, the Kullback-Leibler divergence is not really a
metric. It is a measure of dissimilarity between the theoretical and empirical probabil-
ity distributions [94]. The probabilistic metric space is based on distribution functions
rather than real numbers, with distances from 0 to 1 instead from �1 to 1. In other
words, a dissimilarity measure is not based on the physical distance between two ob-
jects but it is a further generalization of it.
In contrast with the distance metrics, the Kullback-Leibler divergence is more robust
to issues due to the high-dimensional space properties. Furthermore, it is asymmetric
(i.e. d(i, j) 6= d(j, i)) which means that the divergences are not weighted equally.
A general equation of the KL for discrete r.v. is the following

KL(g(y), f(y, ✓)) =
1X

0

g(y){log(g(y))� log(y, ✓̂)} (4)

where g() is the theoretical probability distribution and f(, ) is the empirical probabil-
ity distribution.

The choice of distance metrics plays a critical role in defining the DR methods. As it is
shown in Section: ??, depending on the available information regarding the dimension-
ality reduction problem, one technique will perform better based on the dissimilarity
measure involved. Factors that play a role are the number of dimensions in the original
data space, number of data points, and type of intrinsic manifold nonlinearity.
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Linear vs Nonlinear

Several DR methods have been proposed since the first DR technique invention, PCA
[43]. During the last years, some attempts to categorize all of them have be done [55]
and there is not a unique way to do it. However, one clear distinction which can be
made is their nature, namely if their specified model is linear or nonlinear.
Generally, the nonlinear models are often preferred when the sub-manifold is not em-
bedded linearly in the input space. In other words, when the most relevant dimen-
sions of the data are nonlinearly hidden into the original data space. Since the LDR
techniques are limited to second order statistics and to linear projections [106], they
fail in these kind of problems whereas the nonlinear models perform much better. On
the other side, NLDR techniques often need many hyperparameters and, because of
that, they require more computational time, storage space and large amounts of data.
The nonlinear mapping can preserve the high-dimensional data structure in the low-
dimensional representation of the input space in a more accurate way than how the
linear transformation do. For this reason, NLDR techniques are widely used nowa-
days and we preferred to focus on these methods.

Gradient Descent and SVD

A relevant property of DR techniques is also how they obtain the optimal representa-
tion of each data point by a point in a lower dimensional space. In this work, we can
divide the techniques in two subgroups by method used to find the final embedding:
optimization method-based and eigenvalue decomposition-based techniques.

Gradient Descent

Also called steepest descent, the gradient descent algorithm is well-known in the field
of optimization and largely used for its benefits such as working in spaces of any num-
ber of dimensions. It is mostly based on the only concept of gradient which is the
multi-variable generalization of the derivative [30]. Based on the objective function, it
aims to reach the optimal solution step by step following the opposite direction indi-
cated by the gradient. There is a step-size parameter which determines the magnitude
of transaction at each step. The algorithm stops when the maximum number of itera-
tions has been reached or when the updated solution is close to the optimal based on
a tolerance parameter. Although the algorithm is simple and quite accurate, in some
cases it is possible that it confuses a local optimum with a global optimum; the two
solutions have similar characteristics albeit they are different from each other.
Mathematically, it can be written as follows

x
(n+1) = x

(n) � ↵
(n)�f(x(n)) (5)

where x is a point, n is the number of iteration, ↵ is the step-size and �f(x) is the
gradient of f(x).
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Figure 1: Visual representation of the gradient descent algorithm Source: Why Momentum Really Works, Gabriel Goh [34]

Another limitation of this algorithm is that it can converge slowly. For this reason, it is
useful to use a momentum m to increase the step-size as shown below

m
(n+1) = �m

(n) +�f(x(n)) (6)

x
(n+1) = x

(n) � ↵
(n)

m
(n+1) (7)

It is an acceleration which speeds the optimal solution search, leading to faster conver-
gence by dampening oscillations and creating different new ones [64].

Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix decomposition of a real or complex
matrix A [49]. The decomposition consists of a diagonal matrix ⌃ whose diagonal
entries are the singular values of A and of the matrices U and V whose their columns
are the left and right singular vectors, respectively. In Fig. 2, there is shown SVD of a
general matrix A.

Figure 2: SVD form of a matrix A

The decomposition can be obtained by different algorithms. One of the most intuitive
(and simple) ones is the power method [48]. The iterative procedure consists of a sim-
ple matrix multiplication between the matrix A and an initial vector v, divided by the
norm of this product.
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The algorithm always converges to an eigenvector associated to the dominant eigen-
value and it is written as follows

v
(k+1) =

Av
(k)

||Av(k)|| (8)

where ||Av(k)|| is the eigenvalue associated to the eigenvector v(k).

A special case of SVD is the eigenvalue decomposition [9] which applies only on symmet-
ric matrices.
The fundamental theory of eigenvalue decomposition is based on the following equa-
tion

Av = �v (9)

where � is the eigenvalue associated to the eigenvector v.
If a (non-zero) vector satisfies this linear equation, it is an eigenvector of the matrix A.
Finally, it is important to recall that the eigenvalues and the eigenvectors can be seen
as length and direction of vectors and that the latter ones do not change when linear
transformations are applied to the vectors.

Thus, the techniques which involve the eigenvalue decomposition have some benefits:
no tuning parameters are required for executing the algorithms, there is not an iterative
process which can slower the algorithm and there is no local optima issues as for the
gradient descent optimization algorithm.

PCA and MDS

The NLDR methods are the general cases of the more intuitive LDR methods. In this
section, we describe shortly PCA, MDS and how they are related to each other.

Principal Component Analysis

PCA consists of finding linear combinations of the original variables capturing as much
variance as possible, the so-called principal components, and projecting the original data
on them [7]. The PCs are found by eigenvalue decomposition and they are the eigen-
vectors associated to the largest eigenvalues of the covariance matrix. We report its
mathematical expression under the form of cost function

U1 = w
T
X (10)

C =
NX

i=1

||xi � UdU
T
d (xi)||2 (11)

where U1 is the first principal component with maximum variance and w = [w1, ..., wn]
are the weights. The solution for U can be expressed as SVD of the original data matrix
X .
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Multidimensional Scaling

Similarly to PCA and the other DR methods presented in this work, there are different
versions of these techniques but we refer to the general definition, hence, to classical
MDS here [63]. It aims to minimize the squared difference between the distances of
two points in the higher-dimensional and lower-dimensional spaces.
One way to write it is the following

C =
NX

i=1

NX

j=1

(xT
i · xj � y

T
i · yj)2 (12)

where xi and yi are the data points in the higher-dimensional and in the lower-dimensional
spaces, respectively.
The goal is to identify the coordinates of the N points in the low-dimensional space
minimizing the cost function, also called least squares stress function.

PCA vs MDS

In the literature, since the invention of PCA and MDS, they have been compared often.
In a nutshell, PCA aims to preserve the (co)variance of data, MDS aims to preserve the
distance between data points. However, they are the same when MDS is applied to a
distance matrix based on the Euclidean distance used for measuring the dissimilarity
of data points in the input space. Therefore, MDS is useful when the original data is
not available and only a distance matrix is defined [9]. From eq. 1 and eq. 2, it can
be seen that both of them aim to minimize the squared errors between the distances
measured in the two different spaces [33].

Further reading

We also recommend learning some useful concepts which have not been considered in
the theoretical framework such as the choice of the optimization method [30, 74] and
the different uses of PCA and MDS related to the aims of this work [52, 16, 106].
In addition, further reading is also suggested to have more details about the above-
introduced basics of DR techniques [24, 55, 9, 108, 8].
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Methodology

The design process of this thesis consisted of three main stages: the analysis of the
NLDR algorithms, the visualization process and the final idea implementation.
First, we studied the algorithms, their characteristics and their mechanism. Running
the algorithms on toy examples gave some insights on the parameter settings and that
experience needed to master the techniques. As a result, we could make a first selec-
tion of the suitable visual designs limiting the design space. Afterwards, we followed
some design approaches to reach a (near-)optimal solution to our research question
through visual storytelling.

In the following sections, the objects of study are outlined, the algorithms of NLDR
techniques (Section: Nonlinear Data Reduction techniques), an overview of design meth-
ods and the design strategy are provided (Section: Design Methodology) and a descrip-
tion of the data sets used for the implementations is presented (Section: The Data Used).

Nonlinear Data Reduction techniques

In this section, we describe NLDR techniques of interest detailing their objective func-
tions, advantages and disadvantages. Furthermore, we illustrate the connections be-
tween each other and with MDS and PCA.

Kernel PCA

In Kernel PCA, principal components can be computed correctly in N -dimensional fea-
ture spaces (where N is the number of data points) that are related to the input space
by some nonlinear mapping. As the name suggests, it is based on the Kernel method
and this is the main difference from PCA which makes kPCA more effective when data
are embedded in nonlinear manifolds [100].
The key point of kPCA is to create a NxN Kernel matrix which allows to consider a
nonlinear high-dimensional mapping without working explicitly on it. In fact, we ex-
tract the projections of data on the PCs of the actual N -dimensional feature space by
eigenvalue decomposition of the Kernel matrix and not the PCs themselves [38].
Its cost function is the following

C =
NX

i=1

||�(xi)� UqU
T
q �(xi)|| (13)

where we assume
PN

i=1 �(xi) = 0 and K = �(xi)T�(xi) is the Kernel matrix.
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The algorithm of Kernel PCA

- Computing the Kernel matrix by Kernel function

- Eigenvalue decomposition of the Kernel matrix (by power method)

- Projection of the Kernel matrix to the eigenvectors with the greatest eigenvalues

Thus, the advantage of using kPCA is to apply dimensionality reduction to data based
on the eigenvalue decomposition of an even higher dimensional space showing the
right characteristics of the manifold in which the data points lay (assuming the chosen
Kernel as correct).
The main drawbacks in using kPCA are the fact that the Kernel function must be
known a priori and is impractical to use it on large data sets even though some ef-
fort to improve it have been done [84].

Isomap

Isomap is a global nonlinear generalization of MDS.
In a nutshell, it consists of computing the neighbors of each data point in high-dimensional
data space, usually by the k-NN method and represents it as a weighted (neighbor-
hood) adjacency graph G. Then, the geodesic distances are estimated by computing the
shortest paths (by Dijkstra’s algorithm or Floyd’s algorithm, for example) through the
undirected edges connecting neighbors in G for all pairs of data points. Successively,
MDS (or PCA) is applied to the new matrix obtained to find a lower-dimensional em-
bedding in Euclidean space for the reconstructed data points.
In the following equation, we show what the cost function looks like

C =
NX

i=1

||⌧(DG)� ⌧(DY )|| (14)

where ⌧ is an operator defined by ⌧(D) = �HSH/2, where Sij = D
2
ij is the matrix

of squared distances and Hij = �ij � 1/N is the centering matrix. DY and DG denote
the matrices of Euclidean and geodesic distances, respectively. Hence, the cost func-
tion of Isomap is, basically, an Euclidean norm of the difference between geodesic and
Euclidean distance matrices.

The algorithm of Isomap

- Determining the neighbors of each point

- Constructing a neighborhood graph

- Computing shortest path between all the nodes (as GD)

- Computing lower-dimensional embedding (MDS/PCA)
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Computing the geodesic distances in the original data space allows us to take into ac-
count the nonlinear manifold in which the data points lay, assuming that the G graph
is connected and the neighborhoods on graph reflect those on manifold. One hyper-
parameter has to be set generally, the number of neighbors k but this can be an issue.
In fact, if k is too large, the short-circuits errors can occur which can alter all the recon-
struction in low-dimensional space whereas if k is too small, the neighborhood graph
may become too sparse to estimates geodesic paths accurately [12].
Furthermore, Isomap can be slow due to the steps needed to accomplish a final embed-
ding as the cost function is minimized in the high-dimensional space (eq. 14), although
the optimization problem is convex [60].

Locally Linear Embedding

Locally Linear Embedding (LLE) computes a low-dimensional neighborhood preserv-
ing embedding of high-dimensional data through estimated reconstruction weights
of each neighborhood.
Assuming that weights can define the patches on the manifold as long as they char-
acterize the local geometry in the input data space, LLE defines a linear mapping of
the original data consisting of translation, rotation, and rescaling [81]. However, some
constraints on the reconstruction weights must to be set to maintain intrinsic geometric
properties of data. More specifically, the weights have to be invariant to linear trans-
formations and each data point has to be reconstructed only from its neighbors, which
means that we set

P
j=1 Wij = 1 and, if the ith point is not a neighbor of the jth point,

Wij = 0.
Thus, in LLE each point can be written as a linear combination of its neighbors.

To compute the weights we minimize the following cost function

C =
NX

i=1

||~Yi �
NX

j=1

Wij
~Yj|| (15)

where W is the weight matrix for the local reconstruction.

The algorithm of LLE

- Determining the neighbors of each point

- Constructing a neighborhood graph

- Finding the reconstruction weights for each neighborhood

- Computing lower-dimensional embedding (MDS/PCA)

Assuming that each data point and its neighbors lay on an approximately linear sub-
space, LLE gives (globally) highly nonlinear embeddings of the data with local linear
properties preserved [55]. An advantage of LLE is the convex optimization, in eq.
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15. The objective function is computed in the low-dimension space which saves com-
putational time. On the other hand, this algorithm fails if there is some noise in the
manifold or outliers. As a consequence, the points on the map space are collapsed as
the constraints are cheated by the extreme values [60]. In addition, the hyperparameter
of k-NN has to be set a priori as for Isomap.

Sammon Mapping

Sammon mapping is one of the first NLDR techniques which aims to identify geomet-
ric relationships among subsets of the data vectors in the input space. Simply using
weighted Euclidean distances, it assigns more importance on the small distances pre-
serving the relationships between nearby points [40]. In this manner, the cost func-
tion is optimized by the gradient descent algorithm which minimizes the differences
between corresponding inter-point distances in the two high- and low-dimensional
spaces.
The Sammon’s stress can be written as follows

C =
1

PN
i<j d

⇤
ij

NX

i<j

(d⇤ij � dij)2

d
⇤
ij

(16)

where d
⇤
ij are the distances between data points in the original space and dij are the

distances between data points in the low-dimensional space.

The algorithm of Sammon mapping

- Computing the distance matrix D* for the higher-dimensional space

- Initialization of the projections by PCA or normal distribution

- Computing the distance matrix D for the lower-dimensional space

- Minimizing the difference between D* and D

Although SM is able to generalize, it shows many limitations such as its inefficiency
with complex high-dimensional structures or with a large number of data vectors to
handle [28]. Moreover, it is common to encounter a local optimum problem due to a
non-convex optimization problem. Furthermore, its stress is mostly on preserving the
local structure of data accurately caring less about its global structure. Typically, this
results with a circular final embedding.

Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) is a probabilistic approach to represent high-dimensional
objects in a low-dimensional space while preserving the neighbor identities, the topol-
ogy of data space. Unlike the previous methods, a Gaussian is centered on each object
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in the high-dimensional space and the densities are used to define a probability distri-
bution over all the potential neighbors of the object, constructing an embedding based
on probable neighbors [42].
Therefore, SNE does not require that each high-dimensional point is associated with
only a single location in the low-dimensional space. This is a more precise represen-
tation of the original input space since each single point belongs to several disparate
locations in the low-dimensional space than by assigning exact coordinates.
Thus, the sum of KL divergences over all data points is minimized by using the gradi-
ent descent method as shown in eq. 7 instead of a difference of metrics. Despite that,
other divergences can also be successfully used [17].
The similarity of data points in the higher-dimensional space is the conditional prob-
ability that a point xi would be a neighbor of point xj given that neighbors would be
chosen in proportion to their probability density under a Gaussian centered at xi as the
following equation shows

pj|i =
exp(�||xi � xj||2/2�2

i )PN
k 6=i exp(�||xi � xk||2/2�2

i )
(17)

where pj|i is the conditional probability between data points in the original space, �i is
the variance of the Gaussian and pi|i = 0.

Analogously, the similarity of points in the lower-dimensional space is computed

qj|i =
exp(�||yi � yj||2)

PN
k 6=i exp(�||yi � yk||2)

(18)

where qj|i is the conditional probability between data points in the lower-dimensional
space, �i =

1p
2

and qi|i = 0.

The cost function of SNE is as follows

C =
NX

i=1

KL(Pi||Qi) =
NX

i=1

NX

j=1

pj|ilog
pj|i

qj|i
(19)

where Pi represents the conditional probability distribution over all data points xj with
j 6= i given the point xi and Qi represents the conditional probability distribution over
all points yj with j 6= i given the point yi.

The algorithm of SNE

- Computing the distance matrix D* for the higher-dimensional space

- Converting D* to P

- Computing the distance matrix D for the lower-dimensional space

- Converting D to Q

- Minimizing the KL divergence between P and Q
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In the algorithm of SNE, D* and D are the distance matrices of original and mapped
space computed by using Euclidean distance as in SM. Theoretically, this algorithm
should associate nearby points with a relatively high conditional probability, whereas
distant points will have a low conditional probability.

However, SNE presents a similar issue to the previously-introduced techniques called
the crowding problem. Data points tend to be attracted towards the center of the map by
forces connecting each point to the extreme points. If there are more than few, natural
clusters do not form due to this phenomenon [94].
Furthermore, the SNE’s algorithm includes more than one free parameter to be cho-
sen a priori. In particular, the perplexity plays an important role as it determines the
effective number of neighbors.

t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a variation of SNE. The main dif-
ference between them is the use of Student-t distribution with one degree of freedom
instead of Gaussian distribution for computing the similarity matrix Q in eq. 6.
This innovation solves the crowding issue since the Student-t distribution employed
by t-SNE is a Cauchy distribution which is a special case of the Gaussian distribution
with heavy tails. As a result, the previously-considered extreme values are now con-
sidered as standard points softening substantially the forces derived by them [94].
Besides, t-SNE aims to minimize a symmetric version of the SNE cost function which
is based on joint probability distributions. The cost function of t-SNE is symmetric be-
cause it benefits with a nice property, pij = pji as well as qij = qji.
However, the joint probabilities referred to the high-dimensional data points have to
be defined as shown in eq. 20 instead of a more deducible form as in eq. 21. Turning
conditional probabilities into pairwise probabilities, each data point contributes signif-
icantly to reduce the cost function.
This is shown in the following equation

pij =
pj|i + pi|j

2n
(20)

where pij is the symmetric conditional probability and n is the number of data points.

The similarity of points in the lower-dimensional space is computed through a Student-
t Kernel as follows

qij =
exp(�||yi � yj||2)

PN
k 6=l exp(�||yk � yl||2)

(21)

The cost function of t-SNE is the following

C =
NX

i=1

KL(P ||Q) =
NX

i=1

NX

j=1

pijlog
pij

qij
(22)

where P and Q are the joint probability distributions.
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The algorithm of t-SNE

- Computing the distance matrix D* for the higher-dimensional space

- Converting D* to P

- Computing the distance matrix D for the lower-dimensional space

- Converting D to Q

- Minimizing the KL divergence between P and Q

In terms of efficiency, it is a remarkable improvement of SNE by alleviating the crowd-
ing problem and its superiority among the unsupervised parametric DR techniques
has been shown [59]. In addition, a t-SNE variation can also successfully visualize
non-metric similarities (e.g. word associations or event co-occurrences) by construct-
ing a collection of maps [95]. However, t-SNE is also characterized by a non-convex
optimization problem and its convergence can be slow or erroneous.

Relationships among the techniques

NLDR methods are strongly related to each other. Starting from PCA and MDS, they
are actually equivalent. It can be seen from their cost functions in eq. 12 and in eq. 16
that they aim to minimize the same criterion [55]. SM is a nonlinear (weighted) version
of MDS for a certain metric distance scaling [16]. The difference between them is the
greater stress on representing nearby points in the original space as nearby points in
the mapped space as well by SM.

SNE and t-SNE are similar based on the same concept of using probabilities instead
of coordinates of data points for mapping as discussed previously. Isomap and LLE
are also similar as shown by their algorithm. They are spectral methods based on an
initial k-NN search to construct an adjacency graph of the data in which the similari-
ties among data are computed. However, whereas both Isomap and LLE map nearby
points on the manifold to nearby points in final embedding, only Isomap aims to map
distant points as distant points. On the other hand, LLE is more computationally effi-
cient and it performs better on manifolds whose local geometry is close to Euclidean
but whose global geometry may not be [26]. This is why they are considered global
and local NLDR methods. Finally, they also share the same issues: the short circuits
problem and the collapse problem [26, 82].

It is also possible to show that Isomap and LLE (and PCA and MDS) are special cases
of kPCA [33]. Therefore, SM is also a special case of the kPCA since it is a variation
of MDS [101]. This can be explained by the fact that all the dissimilarities measures
presented in this section can be seen as Kernel functions. Thus, making a larger de-
duction, SNE and t-SNE are a probabilistic version of MDS [95]. Hence, they are also
connected to kPCA which can be considered a general form of the DR techniques.
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Further reading

The field of nonlinear data reduction techniques is vast and there exists many different
variants of each methods illustrated above [23]. Therefore, in order to provide a wider
theoretical framework, we suggest consideration of some applications of kPCA [104,
98], some effort done to exploit SM’s properties [28, 14] and to improve its performance
[73] and how LLE and Isomap are strongly related to methods based on probabilistic
approach for constructing the distance matrix [53]. Moreover, a variant of SNE, UNI-
SNE, which is much better at showing the boundaries between classes [21] and the
variation of t-SNE to speed its convergence up [93] should be checked. Finally, to have
more details about robust DR methods, NLDR techniques in general and about future
developments of this field some further readings are suggested [29, 55, 96].

Design methodology

The visualization process is a kind of algorithm itself. There is an input, a object of
interest and there is an output, the final visualization. Then, a series of actions must be
executed. They can be cycles or conditioned tasks. Altogether they create the process
flow and its structure is well defined by a pipeline model. Similarly to dimensional-
ity reduction process, more than one technique can perform adequately in a certain
case since they share some properties. However, one of them performs better in that
particular case. Once the technique has been selected following certain criteria, some
hyperparameters must be set. Several possible solutions can be found by editing the
initial settings and, the process can also end finding a local optimum. In that case, the
process must be initiated again. Furthermore, the optimum could never be reached,
although it could be well approximated.
Based on the mechanism of the NLDR algorithms, we explored some visual design
methods which led us to obtain a series of visual storytellings.

Visual Storytelling

The main reason this work has been conceived is to provide a useful tool for educa-
tional purposes. Consequently, we focused on visual storytelling as means to commu-
nicate with and to involve our audience in the learning process.
Learning through storytelling can create strong links between theory and practice.
Making use of visualizations, text and various levels of interaction, this technique en-
hances the accessibility and comprehension of material of interest simplifying complex
concepts [54]. Therefore, narrative visualization adds to the communication expres-
siveness and efficiency with different audiences and topics thanks to its flexibility.
Although it may seem to be a simple design method, sophisticated and powerful sto-
rytellings can also be made, conveying abstract concepts connected and expressed by
multiple means. Taking advantage of the iterative optimization methods involved in
some NLDR techniques, we selected the partitioned poster, comic strip and video as gen-
res of interest since the time factor can be the transition key of story [85]. In tradi-
tional stories, usually the frame order corresponds with time which is closely related
to causality. As a consequence, by providing the causal relationships between facts
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and events all the singular parts are connected together in a cohesive and consistent
structure [62].
In addition, the relationships between elements of different frames are enhanced by di-
versifying (un)labeled data by different colors and shades. More specifically, in case of
unlabeled data, the brushing & linking technique can be used to interactively explore
patterns in the data [69]. While selecting some items in one plot, they are also high-
lighted in all other plots. This allows to see how contiguous regions are distributed
within different plots [72].

Therefore, we combined object of interest, audience experience regarding the topic and
an appropriate set of design techniques for designing the visual storytellings. The pos-
sible solutions are infinite but we used some criteria to thin this long list out. For
instance, a measure of effectiveness and expressiveness can compare the different vi-
sualizations based on their capacity to convey accurately all information, and only that
information, to the audience [61]. Also sacrificing details in order to facilitate the un-
derstanding, the so-called data-to-ink ratio rule [78, 91] is a good selection criterion.
In conclusion, as first choice we opted for a passive storytelling in which we decided
where the reader attention should be directed. This ensures that the readers are guided
during this cognitive process. Besides, static visualizations help to link and easily re-
trieve all information provided by different frames and enhance comparison between
them. On the other hand, semi-interactive storytelling could stimulate greater involve-
ment by the readers through interactive exploration of the graphical representations.
They can take control of each section and investigate the relationships between vari-
ous elements. Furthermore, it can also increase the transparency and credibility of the
visual data stories, making it more meaningful for us to share our analysis processes
and considerations [50].

The Design Strategy

The visualization of high-dimensional spaces has always been an issue. As matter of
fact, until the 13th century we were not able to properly represent a 3D space. Only
during the Renaissance, through the masterpieces of Filippo Brunelleschi and thanks
to Leon Battista Alberti who wrote "De Pictura", the concept of perspective appeared for
the first time. In Fig. 3, one of the first studies about the perspective is shown.

Figure 3: Visual explanation of the perspective from "De Pictura", written by Leon Battista Alberti in 1518
Source: Wikipedia
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Without listing all the optics and scientists who contributed to the progress made in
visual design, nowadays we boast of advanced and elegant techniques to visualize
high-dimensional and large data [65, 19, 102].
In this project, we considered the scatter plot essential since the output space of interest
is 2D and the objects are data points. Although parallel coordinates provide an efficient
and flexible data visualization, they are not practical with large dimensionality [45, 86].
Alternatively, the heat map and adjacency matrix are suitable with high-dimensional data
[19]. Finally, we considered the dimensional stacking, a recursive projection method [65].
However, its difficult interpretation makes it hard to use.
Thus, in order to accomplish the goal of finding an efficient visual design, we followed
the 5-design-sheets approach which suggests an initial brainstorming as first step [89].
During brainstorming, we set some rules based on structured games which enhanced
the creative process [37]. When problems are highly abstract, the imagination has to
be released seeking also for counterintuitive and absurd solutions. Through some fo-
cused games, it is easier to let the imagination go.
This diverging phase was, then, followed by an exploration stage. This time, the objec-
tive was not to push further the limits of our imagination, but rather to let conceptual
ideas emerge from the connection of creative sparks generated initially. The solution
started to be shaped and elaborated evaluating all the ideas with a critical point of view
and making the final decisions specifically based on the practical aspects. In addition,
it has been more effective to sketch potential solutions actualizing prototypes before
converging to the final output.
This approach could also be combined to other common approaches in visual design
in order to enhance the design development. Therefore, we engaged a small audi-
ence during the first step. We showed them some sketches asking the issues they were
encountering in interpreting the visualizations and their needs in using NLDR tech-
niques. Thanks to their feedback, we could adjust the visualization design based on
their needs and impressions avoiding self-design for goal-focused design [44]. Further-
more, when we started sketching design concepts we also followed the anti-solution
approach. It consists of progressively identifying what is not working and to add
boundaries in the design space. In this way, it enables a faster convergence to the
final solution.

Figure 4: Initial sketch of the visualization of the Kernel PCA algorithm

20

http://fds.design/
https://articles.uie.com/five_design_decision_styles/


In Fig. 4, a visualization of the kPCA’s algorithm is shown. An interactive tool with
multiple displays was conceived as the best way to illustrate all the steps of kPCA,
including the Kernel matrix computation and the power method process for finding
the eigenvectors with largest eigenvalues. Through multiple displays, the user could
monitor every computation and its effects immediately. Since every view was based
on a different visual technique, this tool could adapt to various data types and data
transformations which occur during the DR process. An interactive visual storyboard
to combine all the techniques necessary to visualize each task of the process, when
possible, in only one tool.
Although it could be an exhaustive way to visualize the algorithm process, it was too
complex to implement in a short time and it did not match all the eligibility criteria set
initially.
Therefore, a visual storytelling approach based on multiple graphical representations
(shown in Fig. 5) was preferred due to its easier interpretation and we modeled the
final visualizations from this concept.

Figure 5: Sketch of the visual storytelling of Kernel PCA

After the definition of the visual design, we implemented the project. Working with
the DRtoolbox made available by Laurens van der Maaten [51], all data processing was
performed off-line using a commercial software package (MATLAB ® R2016b) whereas
the visualizations were created by using D3.js [76].

The Data Used

In this section we provide a description of the data used for getting our results. Most
of them are data sets popular in the statistical word such as Swiss Roll data and data
sets from Kaggle or UCI Machine Learning Repository [1, 3, 27]. They are divided in
two subgroups, Artificial Data and Real Data. For all the data sets, we mention their
size in the form NxM where N is the number of data points and M is the number of
dimensions.
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Artificial Data

First, we created two data sets and we referred to them as Clustered data, 1000x100 and
Non-Clustered data, 1000x40. The first one is structured data separable in seven clusters
whereas the latter one is simply a data matrix randomly generated from a Normal dis-
tribution with five classes assigned also randomly. Both of them have been generated
by using the platform Dataset Generator (datgen) [31].

Figure 6: From the top: the
Clustered data - 2D, Mickey
Mouse data and Circle data

For the special cases, from 3D to 2D and from 2D to 1D,
we employed the so-called Mickey Mouse data, 500x2, as
the three clusters of data form shapes similar to the head
and ears of the popular cartoon character. In addition,
some noise was added too. Next, an artificial data matrix
1600x2 with four well-separated clusters was used in an
example and we called it Clustered data - 2D [27].
Then, we created another classical DR example, the Circle
data, 1671x2, composed of circle-shaped data with some
points also in the middle of circle. The last three data sets
described are shown in Fig. 6. Swiss Roll data is struc-
tured data embedded in a 3D space after a specific map-
ping. Finally, a data matrix was randomly generated from
four different random distributions forming 4 clusters in
a 3D space, Clustered data - 3D, 1250x3. In Appendix 1,
in Fig. 26, there are the graphical representations of this
data viewed from two different angles and of the Swiss
Roll data.

Real Data

The real data structures differ from each other leading to
interesting results to compare and discuss.
Ionosphere data, 351x34, regards classification of radar
returns from the ionosphere [5]. Churn data, 5000x17,
is a private data set and is about the churns in a tele-
phone company. We also used Semeion Handwritten Dig-
its data, 1593x256, which, unfortunately, it has no labels
but an important characteristic [6]. Usually, these kind of
data present numeric values from 0 and 1 but Semeion
data were dichotomized at 0.5. Hence, it contains only 0
or 1 as value greater than 0.5 were considered as 1 and
values less or equal to 0.5 as 0. Since some information is lost, we did not expect much
in terms of DR results but it can be interesting to see how differently the discussed
NLDR methods deal with this data. Moreover, we can explore data patterns by using
brushing & linking technique although the data is unlabeled. Lastly, two examples are
made by using Mushroom data, 3000x23, and Breast Cancer Wisconsin data, 569x32
[2, 4].
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Results

“Vision is an intelligent form of thought”

Andreas Gursky

The results of the visualization process have been grouped per data and NLDR tech-
nique used to give a reading order and a logical thread to readers.
A visual storytelling approach was followed for comparing the SM, SNE and t-SNE ac-
tions by illustrating data in the lower-dimensional space at iteration 1, 10, 30, 100, 300
for all the data sets above-described. This was possible using scatter plots as we set that
output spaces have to be in 2D. The iterations and number of frames were so selected
to show how the lower-dimensional space is optimized starting from a random ini-
tialization by the gradient descent optimization algorithm. The chosen sequence does
not grow linearly because the greatest efforts are made during the first iterations (from
iteration 1 to 30) and the momentum (in SNE and t-SNE) is augmented at iteration 250.
In this way, the evolution of output space is expressed more effectively. Besides, as
most of the data were labeled, in some examples we show the issues of unsupervised
clustering removing the labels and visually exploring the data by brushing & linking.

Unfortunately, humans are not able to perceive more than 3D in a space and that is also
why we perform DR techniques. Hence, as the visualizations of original data spaces
are not available for all the data sets used, we also worked with low-dimensional data
allowing for direct comparisons between input and output spaces.
Furthermore, we made visual storytellings per technique (Appendix 2) to compare the
results of performing NLDR methods to various types of data. In this manner, a deeper
overview of the algorithm process of every single technique is also presented.

However, to visualize the techniques performed by eigenvalue decomposition (i.e.
Isomap, kPCA and LLE), we had to slightly change our approach due to the differ-
ent optimization not based on the gradient descent methods. As we introduced in
Section: Background Knowledge, the nature of these algorithms is different. The power
method does not provide the same progressive evolution of the output space. After a
couple of iterations, an approximation of the optimal solution is already defined and
a sequence of visualizations is meaningless here. Whereas it is much more effective to
show how the low-dimensional space is optimized based on the objective function if a
gradient descent method is performed.
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Thus, we made a visual storytelling of the output spaces obtained by projecting the
initial data on the eigenvector associated to the largest eigenvalue and on the eigen-
vectors associated to the second largest eigenvalue, to third largest one and so on.
This is shown in Fig. 27, in Appendix 1. However, it is not that informative and the
comparisons lose interpretation since the evolution of the story is not based on the al-
gorithm process but from the different "points of view" of the data. Hence, we ended
up comparing the final outputs of these methods applied on different data, including
the low-dimensional ones.

Thanks to the variety of data and NLDR techniques, we could cross compare the final
visualizations and draw conclusions on our findings. In the following sections, the
readers will be guided through the presentation and discussion of results, starting from
the visualizations per artificial data, per low-dimensional data and per real data. In
this learning path, they will observe how NLDR methods work on synthetic data to
understand the theoretical aspects of the algorithms and on real data to understand
their behavior in more complex cases.

Visual Storytelling of SM, SNE and t-SNE

In the visualizations related to SM, SNE and t-SNE the algorithm initialization is ran-
dom. Another option could have been performing PCA on the original data but we
preferred to have a similar first frame for all the stories. It is also important to remark
that the optimization of the SM’s algorithm was performed by the Newton method. It
is similar to the gradient descent but it converges faster as it involves also the use of
Hessian matrix [30]. Furthermore, all the results have been obtained after running the
algorithm several times and setting different combinations of hyperparameters.

Artificial Data

The first case analyzed is data without any pattern shown in Fig. 7. Firstly, we can
observe that data at the final iteration (i.e. i = 300) are arranged similarly to data at
first iteration, that is randomly, for all the techniques. This is because the data is un-
structured. However, the shapes of the agglomeration of points are slightly different
and this is due to their cost functions. For instance, the SM’s embedding is circular
with approximately uniform density which is typical from this technique as explained
above. In the other frames, a "Celtic cross" shape can be seen which may be due to the
critical points of the Hessian matrix involved in the optimization [30].

The NLDR techniques performance are different with data well-clustered. In Fig. 8,
it can be seen that t-SNE correctly separated the seven clusters while SNE encoun-
tered the crowding problem: some extreme values force the mass of points to collapse
into the center and it is not possible to identify patterns. In contrast, the SM roughly
succeeded in identifying classes, although it failed to form clusters. This is due to its
characteristic of focusing on local distances instead of global ones.
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Figure 7: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Non-Clustered data

Figure 8: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Clustered data
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From 3D to 2D

In the previous toy examples, it was possible to get familiar with dimensionality re-
duction. By reducing low-dimensional spaces (3D or 2D) to even lower-dimensional
spaces (2D or 1D), we can compare the solution embedding with the original data space
in Fig. 26, in Appendix 1.

In Fig. 9, there is a visual storytelling related to Swiss Roll data. Even if some clusters
are defined, both t-SNE and SNE did not manage to separate points belonging to dif-
ferent clusters (from i = 30 to i = 300). These algorithms consider the wrapped points as
unique clusters since we assume them in an Euclidean space [21]. The boundaries be-
tween classes are less defined by SNE whereas they are well-delineated by t-SNE. This
due to the different properties between the Gaussian and Student-t distribution. Any
point more distant than 2-3 standard deviations from the mean value can be consid-
ered extreme value by using the Gaussian distribution. As a consequence, the multiple
attractive forces between these points and the rest of points crush together the latter
ones in the center of the map iteration after iteration [94]. Furthermore, it is noticeable
that t-SNE converges faster than SNE in Fig. 9, from iteration 10 and 30. Although SM
preserved the original data structure, it failed to unfold the data manifold.
A different scenario is illustrated in the visualizations in Fig. 10. Overall, all the tech-
niques achieved in revealing patterns successfully. The SM did not reach the 300th it-
eration which means that not much progress was made and the algorithm converged.
Unlike the last example, this data was not embedded in a complex nonlinear manifold
as shown in Fig. 26 and the techniques performed better.

Figure 9: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Swiss Roll data
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Figure 10: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Clustered data - 3D

From 2D to 1D

Reducing a 2D space to a 1D space has also the advantage to be able to visualize the
original input space and to compare it with the output space. We show the points on
a space spanned by the 1D final embedding rotating it 45 �. Applying this jitter to the
data, we make it more visible facilitating the interpretation of results. The stress is on
the extremes of 1D spaces as we consider them more interesting. However, the final
embedding structure was not subjected to any alteration and it is still in one dimen-
sion.
In Fig. 11, there is a visual storytelling related to Clustered data. The SM’s algorithm
stopped after some iterations most probably reaching a local optimum. This can be
deduced as it optimized the distance between points belonging to two classes (i.e. blue
and yellow) but it ignored the classification of points of the other two classes. Differ-
ently, the probabilistic DR methods progressively reached a (near-)optimal solution. In
particular, this story shows how the gradient descent algorithm carries gradually the
output space towards an optimal solution. As this example is simple, the path along
the gradient can be imagined as approximately linear as the optimization problem is
almost convex.
In Fig. 12, SM does not reach the maximum iteration but finding a solution earlier this
time. Similar results for SNE and t-SNE. Thus, in conjunction with Fig. 13, we can
observe that the SM is prone to find local optima in comparison to the other two tech-
niques. This behavior is emphasized when the data structure is more complex such as
Circle data’s where the optimization problem is not close to be a convex.
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Figure 11: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Clustered data - 2D

Figure 12: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Mickey Mouse data
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Figure 13: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Circle data

Real Data

All what we have ascertained from the previous visualizations can now appear con-
fusing and not justified as real data spaces can be much more complex than artificial
ones. They are not controlled by us and we cannot prove that the final embedding
is perfectly representing the original space, although labels are available. In addition,
we are focusing on explaining how and why NLDR techniques work in a certain way
without having any additional information by data analysis.

Starting from Fig. 14, we notice a different but related behavior of the three techniques.
The most interesting pattern evolution is from t-SNE which show some clustering after
only 30 iterations. Although all data lay in a small region, the data points are separated
per class and a circular shape is formed hiding apparently a third dimension. This
subtopic is discussed extensively in Section:Remarks. However, the violet points are
divided in two different clusters so that one cluster is composed of violet as well as
orange points. t-SNE split one class in two different clusters also in the Swiss Roll
example and we will deepen this topic soon. A similar behavior is observed for SNE
and SM even if the violet cluster is more compact there.
Recalling Fig. 9, similar features can be identified in both storyboards. For instance,
the SM final embedding appears to be flattened in contrast to SNE and t-SNE results.
The violet cluster forms a sort of spiral for SM and SNE while t-SNE splits it in two
subgroups in Ionosphere data as also occurred in Swiss Roll data. Thus, we guess
that Ionosphere data points initially laid on a highly nonlinear embedding and for the
same reasons as before the solution is biased. However, this cannot be checked as the
original data structure cannot be visualized.
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Figure 14: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Ionosphere data

Figure 15: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Churn data
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An analogous scenario is shown in the Churn data example illustrated in Fig. 15. In
the last two frames, the lower-dimensional space seems to be in 3D instead of 2D as
if there is an intrinsic dimension on the 2D final embedding. This can mean that the
correct number of dimensions needed to preserve global and local properties of the
high-dimensional manifold is not 2 but 3 [107]. In addition, the imbalance of data does
not help to clarify much as only a small group of point has a different label. Similarly
to the previous example, the original data structure cannot be visualized and we can-
not verify our findings.

Figure 16: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Mushroom data

This is not the only issue when interpreting the final embeddings of NLDR techniques.
It is also common to observe an unexpected outcome for shape, structure or bad match-
ing with labels as illustrated by storytelling related to Mushroom data in Fig. 16. A
multitude of clusters is found by SNE and t-SNE. Even if they located most of the red
and blue points in two different regions, there are not only two main clusters in the
map. In case of unsupervised clustering (i.e. without information about classes) on
this data, it would be challenging to assigns points to the classes.
Thus, in Fig. 17, we did not use labels to color points in the map differently rather we
highlighted a group of clusters which are relatively close to each other. The result is
a wrong classification as shown by the labels in Fig. 18. Although the selected clus-
ters are located nearby on the map, they belong to different classes. This solution is
misleading as there is no correspondence between the right solution indicated by the
labels (i.e. two classes) and the clustering solution (i.e. dozens of classes). However,
the latter solution may not be wrong neither.
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Figure 17: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) performed on Mushroom data
with highlighted regions and without labels

Figure 18: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) performed on Mushroom data
with highlighted regions
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Looking at the description of the original data, it can be seen that it consists of 23 dif-
ferent mushrooms species which should be classified by edibility.
Thus, based on data features, the probabilistic DR techniques may have identified the
mushroom species which are also data classes. The algorithms represent all data in-
formation as an Euclidean distance matrix and, based on it, they define the probability
that each point is a neighbor of another point for all of them.

Therefore, it is possible that they find other patterns in the data, if present, as well. The
NLDR methods should be considered as sorts of metal detectors where the metal is the
pattern structure. They reveal all the patterns and not only the target pattern defined
by labels. Hence, it is useful to know well the structure and description of data as well
as NLDR algorithm operations before performing DR to avoid misleading interpreta-
tion of the results.

A completely different scenario occurs in the Breast Cancer data example illustrated
in Fig. 19. Most of the time, the cluster shapes and the location of points on the map
are less meaningful in t-SNE since it focuses to define and visualize clusters as clearly
as possible. Differently, SM can reveal how the local relationships among points are.
As a consequence, the green cluster is compacted since the first iterations whereas the
orange one is more spread. We can deduce that the two clusters are well defined in the
original data space but the green one lays in a smaller region than the other one.

The last example presented is about Semeion data. It differs from the classical hand-
written digits data for the dichotomization which caused a loss of information as shown
in Fig. 20. Thus, the final solution of t-SNE shows only half of the expected clusters
(i.e. 10 digits) clearly. The isolated group of points (e.g. on the top right side or on the
left side) are supposed to be the well-written digits while in the center there should be
mistakable digits.

Since we do not have information on the classes for this data set, we highlighted one
potential cluster in the map center as illustrated in Fig. 21. The differences between
evolution of that cluster during the optimization process of SM, SNE and t-SNE is due
to the optimization algorithm characteristics outlined previously.

Furthermore, as the SM’s algorithm suffers the high-dimensionality of original data, its
results are similar to those shown for Clustered data case in Fig. 8, due to the Euclidean
distance employment. Whereas SNE is less efficient than t-SNE in defining clusters due
to the lighter tails of the Gaussian distribution.
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Figure 19: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Breast Cancer data

Figure 20: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Semeion data
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Figure 21: Visual storytelling of the algorithm of SM, SNE and t-SNE (per row) at different iteration (per
column) performed on Semeion data with highlighted regions

Visual Storytelling of kPCA, LLE and Isomap

Although it was not possible to show the optimization algorithm to create final em-
beddings as clearly as we did for the previous techniques, we present three visual
storytellings of the kPCA, LLE and Isomap’s algorithms performed by eigenvalue de-
composition on artificial data, 2D artificial data and real data, illustrated in Fig. 22, 23
and 24, respectively.

As we already mentioned, the dimensionality reduction processes based on eigenvalue
decomposition are more difficult to represent graphically in comparison to those based
on the gradient descent method. To explain why, we can compare these two procedures
to the approach of two different schools of art to make a work. In both of them, the
procedure which leads to reproduce (to perform dimensionality reduction) a desired
object (the output space) is performed by observing carefully the real object (the input
data space) and measuring its proportions, sizes and details (the relationships between
data points). At this stage, every artist (any existing DR technique) works in a different
way following his own ideas on the relevance of object physiognomy (the local and/or
global geometry) and using their preferred tools (the dissimilarity measures). In this
way detailed notes (the dissimilarity distances) on the object features are made.
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The artists of the "Optimization" school are sculptors and, afterwards, they start assem-
bling randomly some material (the initialization of the output space) and modeling it
day by day (the iterative process) so that it would bear a good resemblance to the real
object (minimizing the cost function) until they were stopped (the maximum iteration)
or satisfied (the local/global optima) of their work.
In contrast, the artists belonging to the school of "Decomposition" are specialized in vi-
sual effects (the projections). They make use of their notes to choose the best spot (the
matrix to factorize) and its best framing (the eigenvectors with highest eigenvalues)
where they generate shadows and holograms (the projections of the output space) of
the real object.
The work process in the two schools are conceptually different and not meaningfully
comparable. However, their final works and the quality of them are. On this principle,
we made the following visualizations comparing them successively.

Finally, it is also important to remark that the choice of hyperparameters related to
these NLDR techniques affects more the final results and several attempts have been
done to obtain meaningful graphical representations. Generally, we used a Gaussian
Kernel function (µ = 0 and � = 1) when possible (otherwise a linear Kernel function
was used) and we set the number of neighbors k equal to 12.

Artificial Data

In the artificial data examples, we can observe how NLDR methods of interest work.
Looking at Fig. 22, it is clear that these techniques are more difficult to interpret and
robustness in parameter setting changes.

In the column on the right, there is shown Swiss Roll data which is a classical exam-
ple to prove the properties of Isomap and LLE but our results are not satisfying. LLE
partially succeeded in unfolding the data while Isomap obtained a poor embedding
similar to the SM’s. This can be due to bad initial settings. kPCA output shows also a
bad choice of the Kernel function as it indicates no variation among blue and yellow
points.

In the structured and unstructured data, namely with Clustered data and Non-Clustered
data, they did not perform greatly neither. However, a typical shape by LLE is observ-
able in the Non-Clustered data example. It is evident that the constraint of unit vari-
ance is too simple to preserve the global structure of data. This is a major disadvantage
as most of the data collapse in small region of the map worsening its readability. More-
over, for the well-clustered data, we used a linear kPCA (i.e. PCA) but the embedding
is nonlinear. As a result, the generated clusters overlapped. In another way, Isomap
identified some clusters but it arranged them in a confused way on the map. Oppo-
sitely to LLE, usually it succeeds to preserve the global geometry of the input space
while it fails in maintaining its local properties [82]. Both these last NLDR methods are
not based on the probability distributions of data points and, for this reason, they are
not able to neglect how data points are distributed in the original space focusing more
either on local geometry (e.g. LLE) or global geometry (e.g. Isomap).
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Figure 22: Visual storytelling of the algorithm of kPCA, LLE and Isomap (per row) performed on different
artificial data (per column)

From 2D to 1D

Referring to one-dimensional final outputs, the comparison between the current NLDR
techniques is simplified. From Fig. 23, there are illustrated the final embeddings of
kPCA, LLE and Isomap performed to 2D artificial data.

None of them seems to be efficient and practical to use, except in reducing Mickey
Mouse data. For instance, LLE did not succeed in separating the blue and the green
clusters as the k-NN search was based on the default Euclidean distances and not on
more sophisticated and appropriate rules (e.g. choosing all points within a ball of fixed
radius) [79].

Nevertheless, Isomap succeeded in it even if k-NN search was also set with Euclidean
distances. This can be explained by the fact that LLE kept the red cluster closer to the
blue cluster rather than to the bottom part of the green one by the reconstruction local
weights. In contrast, computing the shortest paths of all data points, Isomap evaluated
the three different regions as globally far and distinct.
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Figure 23: Visual storytelling of the algorithm of kPCA, LLE and Isomap (per row) performed on different
artificial 2D data (per column)

Real Data

The next examples offer an overview of how kPCA, LLE and Isomap perform on real
data. As before, the identification of clusters is not straightforward. In Fig. 24, there
are illustrated all the final embeddings and we can make a cross comparison.

Clearly, Breast Cancer data structure is well-represented also by this set of techniques.
As we used a linear Kernel PCA, we deduce that the initial embedding is almost lin-
ear. However, the methods did not perform well with Semeion data since we expected
some clusters representing the 10 digits but there are no clear patterns in the final maps.
This is due to the dichotomization and to the high-dimensionality of data, especially.
According to previous studies, the performance and quality of the k-NN algorithm are
questionable [41] and it is a crucial step for LLE and Isomap.

From the Churn data example, it can be observed that in kPCA final embedding the
points are randomly distributed and that most of the points belonging to the ’churn’
class (i.e. the blue points) is under one of Gaussian distribution tails. This also makes
sense as Churn data points are people and they can easily be normally distributed
based on call habits with churns identified as extreme values. However, it did not clas-
sify the data whereas it was done by Isomap and also by t-SNE.
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In the Mushroom data example, Isomap made good efforts in grouping data correctly.
Whereas the previous set of techniques found several clusters, Isomap’s final embed-
ding presents well-grouped points, although they are still laying on a nonlinear man-
ifold. A good explanation can be the high nonlinearity of the initial embedding and
the use of geodesic distance and shortest path as criteria for constructing the lower-
dimensional space by Isomap [53].

In contrast, Kernel PCA and LLE’s outputs are not interpretable as all the points col-
lapsed. As explained above, this event is common and in the plot related to Churn
data there is another display of it. Finally, the results for Ionosphere data express the
complexity in reconstructing the original data space due to its topology.

Figure 24: Visual storytelling of the algorithm of kPCA, LLE and Isomap (per row) performed on different real
data (per column)
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Remarks

The interpretation of (un)supervised clustering by using NLDR techniques is still trou-
blesome, although the constant progresses to improve the existing methods [23]. An-
alyzing the t-SNE final embeddings in the Ionosphere and Churn data examples illus-
trated in Fig. 33, we should not consider the cluster shapes relevant according to other
works [99]. Therefore, we should neglect the evident curvilinear shapes of data and
consider the data separation obtained, even if a third (intrinsic) dimension seems to be
embedded. In addition, looking at Isomap output space in Fig. 24, points of both data
are well-separated in two clusters confirming this interpretation.

Setting the same parameters, we performed t-SNE on the same data again, except of
the number of output dimensions which now is set to 3 instead of 2. The results are
shown in Fig. 28 and 29 in Appendix 1. Ionosphere data shape is highly curvilinear
and slightly similar to a Möbius strip while Churn data shows a sinusoidal wrapped
shape. From these plots, it is evident that the 2D and 3D final embeddings are similar
for both cases. This means that no much information is lost reducing the original space
to 2D instead of 3D. But there is an intrinsic dimension represented by the red line
which was not detected by t-SNE, as shown in Fig. 25. The points A and B seem to be
close to each other but, along the manifold where they really lay, they are distant. This
interpretation is supported also by the fact that most yellow points are grouped in one
extreme of this surface.

It would be obvious to show the results of Isomap performed on this already reduced
data, however, it would not be much useful.
According to a previous studies [12, 88], an Isomap drawback is its inability in unfold-
ing manifolds with holes (i.e. "short-circuit errors") and this explains all the picture.
In Fig. 24, Isomap separated points in that manner because it cannot do imputation ba-
sically. This means that if some points are missing due to data availability, for instance,
Isomap is not able to take into account it in the computation of final embedding at-
tributing it to the data structure. As a result, only the manifold surface covered by data
points is embedded and not the entire manifold itself.

This shows that real data world are various and none of the discussed techniques per-
forms best in all cases examined. Although we showed that the probabilistic approach
can be considered the best solution for clustering, they are less efficient in unfolding
curvilinear embeddings properly. Differently, Isomap focus is on that aspect since it
uses geodesic distances which read the curvatures of data structure.
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Figure 25: The 3D final embedding by using t-SNE on Churn data. The red line indicates the intrinsic dimen-
sion

Combining different techniques and approaches can also be useful as shown [52, 105],
both sequentially as it could be possible with Churn data and in parallel as it could
be possible with Mushroom data. The visualizations related to the latter data and
illustrated by t-SNE revealed many interesting (unexpected) clusters failing in separat-
ing correctly labeled points. Performing Isomap in parallel made the understanding
of Mushroom data structure clearer: it presents a highly nonlinear (i.e. curvilinear)
nested structure, as the data points can be split in two clusters (global structure) which
can also be separated in many other sub-clusters (local structure).

Finally, in the Breast Cancer data example in Fig. 19, the lower-dimensional space
could have been reduced in one dimension. The curvilinear manifold of data points
composed of two elongated clusters is one-dimensional and a second dimension to
represent the original data structure is redundant.
Analogously to previous statements, we did not test this assumption and we cannot
check it by looking at the original data space as it is high-dimensional.
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Discussion

In this work, we compared six popular NLDR methods by visualizing their algorithms
and final outputs. Using multiple visual storytellings embedded in a broader story-
telling which is this entire paper, we attempted to give more insights on how to use
these techniques.

Therefore, discussing the results obtained we aimed to involve the readers in inter-
preting the visualizations by themselves. The interpretation complexity can be sub-
stantially reduced by associating a basic theoretical knowledge of the algorithms to the
graphical representation elements which enables to go from the visualizations to the
theory and the other way around as well [36].

Unfortunately, some of the algorithms did not include an iterative method for finding
the best embedding sufficiently long and we had to change some storytelling charac-
teristics to make it efficient and expressive. However, it was not possible to compare
how the optimal final embedding was reached for all the techniques.

The order in which we presented the results was decided on purpose. We gradually
introduce our audience into the learning process through toy examples. Initially, just
understanding the basic concepts of the dimensionality reduction process is not obvi-
ous. The low-dimensional examples aimed to facilitate a direct comparison between
input and output spaces and to have an overview of the dimensionality reduction pro-
cess easily.
Alternatively, the real data cases illustrated the issues in working with highly nonlinear
data spaces. In this way, our willing was to encourage readers to move from concrete
examples to abstract thinking developing a critical reasoning about the topic [71].

In the previous chapter, we discussed about t-SNE in particular concluding that un-
ambiguous output interpretations are not possible in DR applications in general as it
is remarked in the next section.
In fact, kPCA is theoretically powerful but is unpractical since it requires to know the
Kernel function a priori. LLE has good properties which can be useful if combined
with the right choice of distance metrics and parameter setting as we outlined in Fig.
23. However, the unit variance constraint is defective.

As the purpose of this thesis is to explain concepts through examples and visualiza-
tions, we did not perform dimensionality reduction (PCA, for instance) prior to the
k-NN algorithm. The Isomap and LLE’s algorithms involve a k-NN search which is
affected by the curse of dimensionality and its application quality is not reliable [58].
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Although SM achieves to represent some original data space properties efficiently, it
generates circular maps without well-defined clusters. SNE is rough in practice as the
frequent crowding problem annihilates the readability of its graphical outputs.

Besides, we stressed the importance of the dissimilarity measure choice since it char-
acterizes the NLDR methods significantly affecting the results. For instance, the KL di-
vergence based on (conditional) probabilities is more robust against high-dimensionality
issues while the shortest path can identify and unfold curvilinear surfaces.

The choice of how to obtain the final embedding is also relevant but not always possi-
ble. Although the optimization methods facilitate the visualization of the NLDR algo-
rithms, they present some issues. In fact, depending on the optimization complexity
(i.e. on the cost function) it is common to find a local optimum or that the algorithm
does not converge in some cases. As a consequence, every algorithm run leads to dif-
ferent results, especially if the initialization is randomly executed [64], and this can be
confusing. On the other hand, SVD can be computationally expensive in case of large
data sets and not possible when only the distance matrix is available. However, they
are equivalent in certain cases as explained previously.

Furthermore, in this project we made use of labels to interpret results assuming that
the data features are relevant for classifying data. Sometimes is possible that there
are underlying latent variables which are ascertainable with certainty only by data
analysis [56]. Finally, we showed how difficult is to perform unsupervised clustering
on real data. Even if visual storytellings are provided with features such as brushing
& linking technique, it is not straightforward to identify correctly the data structure,
especially by using certain NLDR methods or in case of a high number of data features.
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Conclusions

Preprocessing high-dimensional data is complex and requires a good understanding
of the existing DR techniques. As dimensionality reduction of high-dimensional data
spaces is a strongly abstract process, we made use of visual storytellings to provide an
introduction of this topic. The main purpose was to visualize the algorithm of some
NLDR techniques, namely kPCA, LLE, Isomap, SM, SNE and t-SNE and to guide
a general audience through a learning path provided with conceptual explanations,
practical examples, graphical representation and cross comparisons.

Using artificial and real data of different types, we showed various scenarios in which
some features of each technique were highlighted. Some toy examples were illustrated
of which some included performing dimensionality reduction from a 3D to a 2D space
and from a 2D to 1D space. In this way, we attempted to reduce the degree of mathe-
matical experience needed for the assimilation of these abstract concepts.

Moreover, we compared the unsupervised and supervised clustering. It is evident that,
although a lot of effort has been done until now, there is still room for improvements
in this topic, especially regarding unsupervised clustering. The final embedding in-
terpretation of these cases is an issue in dimensionality reduction due to a complete
blind search in highly complex (usually nonlinear) spaces and none of the discussed
techniques can be considered universally efficient.

However, t-SNE is the most sophisticated existing technique as it identifies clusters
efficiently in many types of data. Isomap is also useful because it compensates the de-
ficiencies of t-SNE. When the nonlinear manifold are highly curvilinear and wrapped
in the original data space, t-SNE fails as its algorithm is constructed on Euclidean dis-
tances whereas Isomap is constructed on geodesic distances. Therefore, it would be
interesting to combine the characteristics of these two techniques (i.e. geodesic dis-
tances and probabilistic approach) in future work. Otherwise, a combined use of both
techniques is suggested in certain circumstances.

Furthermore, all the singular visualizations in this work can be seen as frames of a
wider and unique visual storytelling composed of several chapters. The story order
matters but depending on the reader level of experience some stories can be skipped
to explore freely the features of more interest. Each story is independent but it is pos-
sible to fully understand some interesting underlying properties of NLDR techniques
only by connecting and comparing visualizations of different stories. With the addi-
tional comments and digressions, we aimed to release a useful and variegated guide
for satisfying needs of both students and researchers of any field.
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Future Works

In this work, we followed some criteria to provide an efficient and accessible intro-
duction to NLDR methods. We avoided 3D visualizations as much as possible and
dynamic graphs which can be often misleading and unpractical.

However, an interactive version of this work is already public in NLDRviz [57]. In the
future, we aim to extend it to allow users to perform NLDR techniques by themselves
on their own data. This interactive tool could be used for studying and for investigat-
ing data and techniques of one’s own interest. The reconstruction of final embeddings
will be shown not only as frames but also as atomic videos to improve the algorithm
understanding. In addition, some extensions could make it even more sophisticated
letting people decide in which part of the algorithm the major focus should be. Finally,
the most ambitious objective is to let people edit the algorithms and create their own
new ones, making this platform a DR technique laboratory.

Furthermore, implementing Isomap, LLE and kPCA with an iterative method instead
of an eigenvalue decomposition may be able to improve the visual storytelling and en-
hance comparison with SM, SNE, and t-SNE. Some attempts have been done to change
the algorithm of these techniques to facilitate the visualization of DR process. For in-
stance, in Fig. 30, there is a sequence of visualizations which capture the output space
evolution generated by kPCA. Instead of PCA, the output is optimized by the Gen-
eralized Hebbian Algorithm which is a feedforward neural network model [20]. This
can be a valid alternative to SVD and a way to investigate more in the future. Other
solutions can be also the Arnoldi iteration [11].

Finally, receiving feedback during the initial phase as well as during the testing phase
of the project could let us improve the storytellings based on the user needs and to
check their effectiveness and expressiveness. In future works, a statistical validation of
the results and an evaluation of the visual storytelling method by randomly selecting
a sample of the intended audience can improve this work.
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Appendix 1

Other figures

Figure 26: Swiss Roll data (on the left) and Clustered data observed from two different angles

Figure 27: Visual storytelling of the algorithm of kPCA, LLE and Isomap (per row) for different combinations
of eigenvectors (per column) performed on Ionosphere data
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Figure 28: The 3D final embedding by using t-SNE on Churn data observed from different angles

Figure 29: The 3D final embedding by using t-SNE on Ionosphere data. On the figure on the right, the red line
indicates the intrinsic dimension

Figure 30: Visual storytelling of kPCA at different iteration (per column) of the Generalized Hebbian Algorithm
(GHA) performed on Ionosphere data
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Appendix 2

Visual Storytelling per Technique

Visualizing storytelling per technique highlights pros and cons of the algorithms char-
acteristics where each storyboard represents the DR technique profile.
Fig. 31 shows the tendency of SM to create uniform dense circular-shaped final embed-
dings due to the simple cost function based on the Euclidean distance. Differently, the
SNE final outputs highlight the crowding problem as shown in Fig. 32. Although the
points belonging to the same class seem to be arranged correctly close to each other,
they tend to collapse in the map center.
This issue is not observed in t-SNE which successfully separates clusters as illustrated
in Fig. 33. Despite that, it struggles to recognize and unfold embeddings with curvi-
linear shapes adequately. Consequently, it can split data from the same class in more
clusters. This can be attributed to the use of joint/conditional probabilities based on a
Euclidean distance matrix to define dissimilarities between data points.

Figure 31: Visual storytelling of the algorithm of SM at different iteration (per column) performed on Ionosphere
data, Churn data and Semeion data (per row)
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Figure 32: Visual storytelling of the algorithm of SNE at different iteration (per column) performed on Iono-
sphere data, Churn data and Semeion data (per row)

Figure 33: Visual storytelling of the algorithm of t-SNE at different iteration (per column) performed on Iono-
sphere data, Churn data and Semeion data (per row)

49



References

[1] Kaggle: Your Home for Data Science. https://www.kaggle.com/.

[2] Mushroom Classification | Kaggle. https://www.kaggle.com/uciml/mushroom-classification.

[3] UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/.

[4] UCI Machine Learning Repository: Breast Cancer Wisconsin (Diagnostic) Data Set. https://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic).

[5] UCI Machine Learning Repository: Ionosphere Data Set. https://archive.ics.uci.edu/ml/datasets/ionosphere.

[6] UCI Machine Learning Repository: Semeion Handwritten Digit Data Set. http://archive.ics.uci.edu/ml/datasets/
semeion+handwritten+digit.

[7] Hervé Abdi and Lynne J. Williams. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics,
2(4):433–459, 2010.

[8] CC C Aggarwal. Re-designing distance functions and distance-based applications for high dimensional data. ACM SIG-
MOD Record, 30(1):256–266, 2001.

[9] Charu C. Aggarwal. Data Mining: The Textbook. 2015.

[10] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the surprising behavior of distance metrics in high
dimensional space. Database Theory – ICDT 2001, pages 420–434, 2001.

[11] W E Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem. (2):17–29, 1950.

[12] Mukund Balasubramanian and Eric L Schwartz. The isomap algorithm and topological stability. Science (New York, N.Y.),
295(2002):7, 2002.

[13] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When Is “ Nearest Neighbor ” Meaningful ? pages
217–235, 1998.

[14] Its’hak Dinstein Boaz Lerner, Hugo Guterman, Mayer Aladjem and Yitzhak Romem. On pattern classification with Sam-
mon’s Nonlinear Mapping - An Experimental Study. Mathematics, Applied Management, Production, 31(4):371–381, 1998.

[15] Jamis Buck. Buckblog: Maze Generation: Algorithm Recap. http://weblog.jamisbuck.org/2011/2/7/
maze-generation-algorithm-recap.

[16] Andreas Buja, Deborah F Swayne, Michael L Littman, Nathaniel Dean, Heike Hofmann, and Lisha Chen. Data Visualization
with Multidimensional Scaling. 06511:1–30, 2007.

[17] Kerstin Bunte, Sven Haase, Michael Biehl, and Thomas Villmann. Stochastic neighbor embedding (SNE) for dimension
reduction and visualization using arbitrary divergences. Neurocomputing, 90:23–45, 2012.

[18] Nicky Case. Explorable Explanations. http://explorableexplanations.com/.

[19] Antony Unwin Chun-houh Chen, Wolfgang Hardle. Handbook of Data Visualization.

[20] Original Contribution. Optimal Unsupervised Learning in a Single-Layer Linear Feedforward Neural Network. 2:459–473,
1989.

[21] James Cook, Ilya Sutskever, Andriy Mnih, and Geoffrey Hinton. Visualizing Similarity Data with a Mixture of Maps.
International Conference on Artificial Intelligence and Statistics, (1):67—-74, 2007.

[22] Aldo Cortesi. Sortingalgorithmvisualisation.

50

https://www.kaggle.com/
https://www.kaggle.com/uciml/mushroom-classification
http://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/ionosphere
http://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit
http://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit
http://weblog.jamisbuck.org/2011/2/7/maze-generation-algorithm-recap
http://weblog.jamisbuck.org/2011/2/7/maze-generation-algorithm-recap
http://explorableexplanations.com/
Sorting%20algorithm%20visualisation


[23] Robert Cowell. Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. 2005.

[24] D R Cox, V Isham, N Keiding, T Louis, N Reid, R Tibshirani, H Tong, Monte Carlo, Methods J M Hammersley, and D C
Handscomb. Monographs on statistics and applied probability. Number 1960. 2001.

[25] Daniel Kunin. Seeing Theory. http://students.brown.edu/seeing-theory/.

[26] V de Silva and J B Tenenbaum. Global Versus Local Methods in Nonlinear Dimensionality Reduction. pages 705–712, 2003.

[27] Dinoj Surendran. Swiss Roll Dataset. http://people.cs.uchicago.edu/{~}dinoj/manifold/swissroll.html.

[28] Witold Dzwinel. How to make sammon’s mapping useful for multidimensional data structures analysis. Pattern Recognition,
27(7):949–959, 1994.

[29] Alessio Farcomeni and Luca Greco. Robust methods for data reduction. 2015.

[30] R Fletcher. Practical methods of optimization, 1986.

[31] Gabor Melli. Dataset Generator - Perfect data for an imperfect world. http://www.datasetgenerator.com/.

[32] David Galles. Data Structure Visualization. https://www.cs.usfca.edu/{~}galles/visualization/Algorithms.html.

[33] Ali Ghodsi. Dimensionality reduction a short tutorial. Department of Statistics and Actuarial Science, Univ. of Waterloo, Ontario,
Canada, 37:38, 2006.

[34] Gabriel Goh. Why Momentum Really Works. http://distill.pub/2017/momentum/.

[35] A Ardeshir Goshtasby. Similarity and Dissimilarity Measures, pages 7–66. Springer London, London, 2012.

[36] S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit. From Visual Exploration to Storytelling and Back Again.
Computer Graphics Forum, 35(3):491–500, 2016.

[37] Dave Gray and James Macanufo. Gamestorming.

[38] Detlef Groth, Stefanie Hartmann, Sebastian Klie, and Joachim Selbig. Kernel Principal components analysis. Methods in
molecular biology (Clifton, N.J.), 930(4):527–47, 2013.

[39] Naftali Harris. Visualizing K-Means Clustering. https://www.naftaliharris.com/blog/visualizing-k-means-clustering/.

[40] Paul Henderson. Sammon Mapping. Pattern Recognition Letters, 18:1307–1316, 1997.

[41] Alexander Hinneburg, Charu C Aggarwal, and Daniel a Keim. What is the Nearest Neighbor in High Dimensional Spaces?
Proceedings of the 26th VLDB Conference, pages 506–515, 2000.

[42] Geoffrey E Hinton and Sam T Roweis. Stochastic neighbor embedding. Advances in neural information processing systems,
pages 833–840, 2002.

[43] Harold Hotelling. Analysis of a complex statistical variables into principal components.

[44] Jared M. Spool. 5 Design Decision Styles. What’s Yours? https://articles.uie.com/five{_}design{_}decision{_}styles/.

[45] Jimmy Johansson, Patric Ljung, Mikael Jern, and Matthew Cooper. Revealing structure within clustered parallel coordinates
displays. Proceedings - IEEE Symposium on Information Visualization, INFO VIS, pages 125–132, 2005.

[46] Jr. John W. Sammon. A Nonlinear Mapping for Data Structure Analysis. IEEE Transactions on Computers, C(5), 1969.

[47] James M Joyce. Kullback-Leibler Divergence, pages 720–722. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[48] Ravi Kannan and John Hopcroft. Computer Science Theory for the Information Age. 2012.

[49] Baker Kirk. Singular Value Decomposition Tutorial. 2005:14–20, 2005.

[50] Jennifer Frazier Kwan-Liu Ma, Isaac Liao, Helwig Hauser, Helen-Nicole Kostis. Scientific Storytelling Using Visualization.
2012.

[51] Laurens van der Maaten. t-SNE. https://lvdmaaten.github.io/tsne/.

[52] Neil Lawrence. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models.
6:1783–1816, 2005.

[53] Neil D Lawrence. Spectral Dimensionality Reduction via Maximum Entropy. 15:51–59, 2011.

51

http://students.brown.edu/seeing-theory/
http://www.datasetgenerator.com/
http://distill.pub/2017/momentum/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://lvdmaaten.github.io/tsne/


[54] Bongshin Lee, Nathalie Henry Riche, Petra Isenberg, and Sheelagh Carpendale. More Than Telling a Story: Transforming
Data into Visually Shared Stories. 2015.

[55] John a Lee, John Lee, and Michel Verleysen. Nonlinear Dimensionality Reduction. 2007.

[56] Elizaveta Levina, Ann Arbor Mi, and Peter J Bickel. Maximum Likelihood Estimation of Intrinsic Dimension.

[57] Lorenzo Amabili. NLDRviz. https://lorenzoamabili.github.io/.

[58] Gabor Lugosi Luc Devroye, Laszlo Gyorfi. A Probabilistic Theory of Pattern Recognition. 1996.

[59] Laurens Van Der Maaten. Learning a Parametric Embedding by Preserving Local Structure. JMLR Proceedings vol. 5 (AIS-
TATS), pages 384–391, 2009.

[60] Laurens Van Der Maaten, Eric Postma, and Jaap Herik. Dimensionality Reduction : A Comparative Review. (April), 2009.

[61] Jock Mackinlay. Automating the Design of Graphical Presentations of Relational Information. 5(April 1986):110–141, 1987.

[62] Kosara Jock Mackinlay Robert. Storytelling: The Next Step for Visualization. pages 44–50, 2013.

[63] K V Mardia and T Kent. Multivariate Analysis.

[64] James Martens and Geo Hinton. On the importance of initialization and momentum in deep learning. (2010), 2012.

[65] A.R. Martin and M.O. Ward. High Dimensional Brushing for Interactive Exploration of Multivariate Data. Proceedings
Visualization ’95, pages 271–278, 1995.

[66] Andrew McCallum, Kamal Nigam, and Lyle L.H. Ungar. Efficient clustering of high-dimensional data sets with application
to reference matching. Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 169–178, 2000.

[67] Duncan Meech. Animated Algorithms. http://www.algomation.com/.

[68] Mike Bostock. D3.js - Data-Driven Documents. https://d3js.org/.

[69] Mike Bostock. Scatterplot Matrix Brushing - bl.ocks.org. https://bl.ocks.org/mbostock/4063663.

[70] Mike Bostock. Visualizing Algorithms. https://bost.ocks.org/mike/algorithms/.

[71] Maria Montessori. The Montessori Method : the origins of an educational innovation: including an abridged and annotated edition
of Maria Montessori’s The Montessori Method, volume 1. 2004.

[72] Tamara Munzner. Visualization Analysis and Design. 2014.

[73] E Pekalska, D. de Ridder, R. P. Duin, and M. A. Kraaijveld. A new method of generalizing Sammon mapping with applica-
tion to algorithm speed-up. pages 221–228, 1999.

[74] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. (December), 2015.
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